雷锋网按:本文原作者AaronYang,原载于知乎专栏。雷锋网已获得作者授权。导读:首先我想在这里声明的是,本篇文章针对的是一些已经具备一定神经网络知识的人。意在帮助大家梳理神经网络中涉及的数学知识,以及理解其物理含义。希望大家读过之后,可以使大家对于神经网络有更多角度的理解,帮助大家推导以及理解其中的数学公式。1.线性代数矩阵乘以向量的物理含义矩阵乘法我更喜欢称作线性转换。一个矩阵乘以向量中,矩阵相当于一个转换函数,而向量是一个输入,已知了输入和函数,我们就可以知道输出。这里需要强调的是,向量共有两种形式,一种为列向量,一种为行向量。在默认情况下,向量是指列向量。大部分的国内教材中,并没有特意提到这一点。很多人接触到编写代码时,都是以行向量的形式开始学习,导致后续有很多概念产生混淆。在本文中,若无特殊说明,向量的形式默认为列向量。首先我们先看以下的2道热身题:1.假设读者并不知道矩阵乘法的运算准则,能否在假想的几何空间中,快速地反应出答案是多少呢?给大家30s。(记住,不可以通过运算法则来进行计算)2.同样地,利用假想的几何空间想象,是否可以立即解答出矩阵是什么?如果读者可以快速解答出上面的问题,那么恭喜您,您已经了解了线性代数空间转换的本质;如果没有解答出,那就是我写这篇文章的意义。先抛开上面两道题,这里来介绍一下矩阵。线性代数与空间几何是存在紧密的联系的。基本所有的线性代数都有其对应的几何表示方法。理解几何,是理解线性代数的核心所在。以二维空间作为例子,与是二维空间的单位基向量。任何的向量都是由这两个单位基向量线性组合而成,并表示出来,例如。现在,我们来看一张动图:更多动图的信息请
转载请注明:http://www.cvwkh.com/jbjs/15209.html